On Classes of Distributed Petri Nets

Jens-Wolfhard Schicke-Uffmann

2018-04-11

Consider a network service with (wlog. 2) users:

However, some users are hackers.

Abstract view: Hacker uses information flow + magic.

Separate shutdown success reporting!

Separate shutdown success reporting!

Maybe there is a better way?

Maybe there is a better way?

Paxos?

Edge Computing?

- Maybe there is a better way?
- Use infinitely many computers?
- What exactly is an acceptable solution here?

Formal Model

Abstract as much as possible. We need:

- (Parts of) the system can be in different states
- (Parts of) the system can do various things
- The parts of the system are spatially distributed
- Parts of the system send each other information

A *Petri net* is a tuple $N = (S, T, F, M_0, \ell)$ with

A Petri net is a tuple $N = (S, T, F, M_0, \ell)$ with S a set of *places*,

A Petri net is a tuple $N = (S, T, F, M_0, \ell)$ with S a set of places, T a set of transitions $(S \cap T = \emptyset),$

A Petri net is a tuple $N = (S, T, F, M_0, \ell)$ with S a set of *places*, T a set of *transitions* $(S \cap T = \emptyset)$, $F : (S \times T \cup T \times S) \rightarrow \mathbb{N}$ a *flow relation* including *arc weights*,

A *Petri net* is a tuple $N = (S, T, F, M_0, \ell)$ with

- S a set of places,
 - T a set of *transitions* $(S \cap T = \emptyset),$
- $F: (S \times T \cup T \times S) \rightarrow \mathbb{N}$ a flow relation including arc weights,
- $M_0:S o\mathbb{N}$ an *initial marking*, and

A *Petri net* is a tuple $N = (S, T, F, M_0, \ell)$ with

- S a set of places,
 - T a set of *transitions* $(S \cap T = \emptyset),$
- $F: (S \times T \cup T \times S) \rightarrow \mathbb{N}$ a flow relation including arc weights,
- $M_0: S \to \mathbb{N} \text{ an initial} marking, and$
- $\ell: T \to \operatorname{Act} \cup \{\tau\}$ a *labelling function*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
- $\square [M_0\rangle \text{ denotes the set of } reachable \text{ markings.}$
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
 - $[M_0\rangle \text{ denotes the set of } reachable \text{ markings.}$
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
 - $[M_0\rangle \text{ denotes the set of } reachable \text{ markings.}$
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
 - $[M_0\rangle$ denotes the set of *reachable* markings.
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
 - $[M_0\rangle$ denotes the set of *reachable* markings.
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- $t \in T$ is enabled if $t \leq M$. • A nonempty, finite $G \in \mathbb{N}^T$ is a step from M to marking M' iff • $G \leq M$ and $M' = M - • G + G^{\bullet}$.
- $[M_0\rangle \text{ denotes the set of } reachable markings.}$
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
 - $[M_0\rangle$ denotes the set of *reachable* markings.
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
 - $[M_0\rangle$ denotes the set of *reachable* markings.
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

Dynamic Behaviour – Firing Rule

Let $N = (S, T, F, M_0, \ell)$ be a net.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
 - $[M_0\rangle$ denotes the set of *reachable* markings.
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

Dynamic Behaviour - Firing Rule

Let $N = (S, T, F, M_0, \ell)$ be a net.

- A multiset $M \in \mathbb{N}^S$ is a *marking* of *N*.
- t ∈ T is enabled if •t ≤ M.
 A nonempty, finite G ∈ N^T is a step from M to marking M' iff •G ≤ M and M' = M •G + G•.
- $\square [M_0\rangle \text{ denotes the set of } reachable \text{ markings.}$
- If $[M_0\rangle \subseteq \{0,1\}^S$ the net is *1-safe*.

Distributed Nets

Let $N = (S, T, F, M_0, \ell)$ be a net.

An equivalence relation $\equiv_D \subseteq (S \cup T) \times (S \cup T) \text{ is a}$ *distribution* iff

•
$$\forall t \in T, s \in \bullet t.s \equiv_D t$$
, and
• if $M \in [M_0\rangle$ and
 $M[\{t, u\}\rangle M'$ then $s \neq_D t$.

N is *distributed* if any distribution exists.

Distributed Nets

Let $N = (S, T, F, M_0, \ell)$ be a net.

An equivalence relation $\equiv_D \subseteq (S \cup T) \times (S \cup T) \text{ is a}$ *distribution* iff

•
$$\forall t \in T, s \in \bullet t.s \equiv_D t$$
, and
• if $M \in [M_0\rangle$ and
 $M[\{t, u\}\rangle M'$ then $s \neq_D t$.

N is *distributed* if any distribution exists.

- Non-τ transitions denote interactions with the environment.
- Tokens remember causal history.
- When recording only set of historic labels, statespace becomes finite for finite nets.

- Non-τ transitions denote interactions with the environment.
- Tokens remember causal history.
- When recording only set of historic labels, statespace becomes finite for finite nets.

- Non-τ transitions denote interactions with the environment.
- Tokens remember causal history.
- When recording only set of historic labels, statespace becomes finite for finite nets.

- Non-τ transitions denote interactions with the environment.
- Tokens remember causal history.
- When recording only set of historic labels, statespace becomes finite for finite nets.

- Non-τ transitions denote interactions with the environment.
- Tokens remember causal history.
- When recording only set of historic labels, statespace becomes finite for finite nets.

Processes

A pair $\mathcal{P} = (\mathcal{N}, \pi)$ is a *process* of a net $N = (S, T, F, M_0, \ell)$ iff $\mathcal{N} = (\mathcal{P}, \mathcal{T}, \mathcal{F}, \mathcal{M}_0, \ell)$ is a net, satisfying

$$\forall s \in \mathscr{P}. |{}^\bullet s| \leq 1 \geq |s^\bullet| \land \ \mathcal{M}_0(s) = \begin{cases} 1 & \text{iff } {}^\bullet s = \emptyset \\ 0 & \text{otherwise} \end{cases},$$

all arc-weights are 1, i. e. $\mathcal{F}(x, y) \in \{0, 1\}$ for all x, y and \mathcal{F} can be considered a relation,

F is acyclic, i. e. ∀*x* ∈ *P* ∪ *T*.(*x*, *x*) ∉ *F*⁺, where *F*⁺ is the transitive closure of *F*,

• and $\{t \mid (t, u) \in \mathcal{F}^+\}$ is finite for all $u \in \mathcal{T}$.

• $\pi : \mathcal{P} \cup \mathcal{T} \to S \cup T$ is a function with $\pi(\mathcal{P}) \subseteq S$ and $\pi(\mathcal{T}) \subseteq T$, satisfying

•
$$|\pi^{-1}(s) \cap \mathcal{M}_0| = M_0(s)$$
 for all $s \in S$,

•
$$\forall t \in \mathcal{T}, s \in S. F(s, \pi(t)) = |\pi^{-1}(s) \cap \bullet t| \land F(\pi(t), s) = |\pi^{-1}(s) \cap t^{\bullet}|$$
, and

$$\forall t \in \mathcal{T}.\ell(t) = \ell(\pi(t)).$$

Processes

Let $\mathcal{P} = (\mathcal{N}, \pi)$ be a process and $\mathcal{N} = (\mathcal{P}, \mathcal{T}, \mathcal{F}, \mathcal{M}_0, \ell)$.

- The end of the net \mathcal{N}° is the set $\{s \in \mathcal{F} \mid s^{\bullet} = \emptyset\}$.
- P is maximal iff $\nexists G.\pi(\mathcal{N}^{\circ})[G\rangle_N$.
- The set of all maximal processes of a net N is denoted by MP(N).

Labelled Partial Orders

A labelled partial order is a structure (V, T, \leq, ℓ) where

- V is a set of vertices,
- T is a set of *labels*,
- $I \leq \subseteq V \times V$ is a partial order relation,
- $l: V \rightarrow T$ (the *labelling* function).

Pomsets

Two labelled partial orders $o = (V, T, \leq, \ell)$ and $o' = (V', T', \leq', \ell')$ are *isomorphic*, $o \cong o'$ iff there exists a bijection $\phi : V \to V'$ such that

•
$$\forall v \in V.\ell(v) = \ell'(\phi(v))$$
 and

$$\forall u, v \in V. u \leq v \Leftrightarrow \phi(u) \leq \phi(v).$$

The *pomset* of *o* is its isomorphism class $[o] := \{o' \mid o \ge o'\}$.

Pomset Traces

Let $\mathcal{P} = ((\mathcal{F}, \mathcal{T}, \mathcal{F}, \mathcal{M}_0, \ell), \pi)$ be a process.

- Let $\mathcal{O} := \{t \in \mathcal{T} \mid \mathcal{X}(t) \neq \tau\}$, i. e. the visible transitions of the process.
- The visible pomset of \mathcal{P} is the pomset $VP(\mathcal{P}) := [(\mathcal{O}, \operatorname{Act}, \mathcal{F}^* \cap \mathcal{O} \times \mathcal{O}, \mathcal{l} \cap (\mathcal{O} \times \operatorname{Act}))]$ where \mathcal{F}^* is the transitive and reflexive closure of the flow relation \mathcal{F} .
- $MVP(N) := \{VP(\mathcal{P}) \mid \mathcal{P} \in MP(N)\}$ is the set of visible pomsets of all maximal processes of *N*.
- Two nets *N* and *N'* are completed pomset trace equivalent, $N \approx_{CPT} N'$, iff MVP(N) = MVP(N').

a

Completed Pomset Trace Equivalence

- Tracks causality
- Tracks deadlocks
- 🍋 Tracks divergence
- Abstracts from transition identities
- Abstracts from decision structure
- Abstracts from non-diverging silent transitions

Formal Problem Statement

Can we find a 1-safe, finite, and distributed Petri net which is completed pomset trace equivalent to this specification net?

Formal Problem Statement

Can we find a 1-safe, finite, and distributed Petri net which is completed pomset trace equivalent to this specification net?

Formal Problem Statement

Can we find a 1-safe, finite, and distributed Petri net which is completed pomset trace equivalent to this specification net?

No.

Sketch of the Proof

- Track only token colour, not full history.
- Extend markings to dependency markings $M: (S \times 2^{ACt}) \rightarrow \mathbb{N}.$
- Finite 1-safe net has infinite runs, but statespace of size at most $m := (1 + 2^{|\text{Act}|})^{|S|}$, i.e. finite.

Lemma: For a dependency marking M,

if $M[\{t_1\}\rangle [\{t_2\}\rangle \cdots [\{t_n\}\rangle M$

- all tokens produced by t_i have the same dependencies as those consumed,
- as otherwise, the less-dependent tokens could have been produced without *t_i*; violating 1-safety.

Sketch of the Proof

Theorem: There is no 1-safe, finite, distributed Petri net which is completed pomset trace equivalent to our specification.

- Specification can fire $(ac)^m b$.
- While doing so, some dependency marking *M_i* must be reached twice.
- With the Lemma, partition the loop into *a*-coloured and *c*-coloured part.
- While a^m can be fired, must also be able to fire c^m, otherwise new pomset with finitely many c but infinitely many a is generated. Dito with a and c reversed.
- In (ac)^mb a single transition must have consumed an a-coloured and a c-coloured token, hence these two tokens reside on co-located places.
- As these tokens lead independently to a^m resp. c^m there are two concurrently firing transactions consuming them, hence they must be on different locations.

Core of the Problem

The "M" (i.e. optional coordination).

Core of the Problem

The "M" (i.e. optional coordination).

Is this particular to completed pomset trace equivalence?

Finite Step Failures Equivalence

Whenever the net can only fire visible transitions, record a step failure pair, i. e.

- the trace of labels leading up to this marking, and
 - all finite multisets of labels which can not fire in the next step.

Compare set of recorded step failure pairs.

- Abstracts from causality
- Tracks deadlocks
- Tracks divergence
- Abstracts from transition identities
- Tracks decision structure
- Abstracts from non-diverging silent transitions
- Tracks concurrency
Counterexample for Finite Step Failures Equivalence

Coarser than Finite Step Failures?

Without branching structure ("linear-time"):

Decide everything on central location, execute visible transitions on distributed locations

With interleaving semantics:

Connect all transitions to central scheduling place

When allowing divergence:

Finer than Finite Step Failures?

- Results stable up to branching ST-bisimilarity with explicit divergence.
- Includes practically the entire branching-time part of Rob's spectrum.

- Answer comprises the largest part of my thesis
- ... because everything non-M can be implemented

- Answer comprises the largest part of my thesis
 - ... because everything non-M can be implemented
- About 10 pages to describe the necessary Petri net construction
- About 30 pages for the correctness proof

- Answer comprises the largest part of my thesis
 - ... because everything non-M can be implemented
- About 10 pages to describe the necessary Petri net construction
- About 30 pages for the correctness proof (with huge invariant)

- Answer comprises the largest part of my thesis
 - ... because everything non-M can be implemented
- About 10 pages to describe the necessary Petri net construction
- About 30 pages for the correctness proof (with huge invariant)
- About 8 pages to describe a Petri net to distributed C compiler used for testing

- Answer comprises the largest part of my thesis
 - ... because everything non-M can be implemented
- About 10 pages to describe the necessary Petri net construction
- About 30 pages for the correctness proof (with huge invariant)
- About 8 pages to describe a Petri net to distributed C compiler used for testing
- and finding a bug in the already published construction and proof

What About Other Formal Models?

How dependent are the results on the choice of Petri nets specifically?

- Not terribly so: π-calculus results co-developed by Peters & Nestmann, formal connection was being worked on by Mennicke.
- Some hardware-centric results by Lamport seem related, no formal connection established.

Ways to Evade the Negative Theorems

- Don't use branching time and solve the consensus problems probabilistically.
- Assume bounded message delays (often needed for error detection anyway).
- Use approximately uniform passage of time.
- Physical effects not accurately captured by Petri nets.

Open Problems and Questions

- Where between weak completed step trace equivalence and finite step failures equivalence become Ms unimplementable?
- Conjecture: There is some "asynchronous branching time" equivalence (and Ms are implementable therein).
- Which structure(s) delineate(s) the limit of distributed implementability when checking all three of divergence, causality and branching time?
- Stability of Ms in non-safe nets under causality only conjectured so far.
- Efficient modelling of quantum-mechanical effects for distributed computing.

References and Earlier Publications

The thesis includes content from various papers with Glabbeek, Goltz, Mennicke, Nestmann, Peters (alphabetically ordered).

"External" must-reads:

- Best and Darondeau: "Petri net distributability"
- Gorla: "On the relative expressive power of asynchronous communication primitives"
- Hopkins: "Distributable nets"
- Palamidessi: "Comparing the expressive power of the synchronous and the asynchronous π-calculus"
- Taubner: "Zur verteilten Implementierung von Petrinetzen"

Results

- Identified the M as a problematic structure for distributed implementations
- Showed stability under causality respecting equivalences
- Showed stability under branching time equivalences
- Showed the M to be the smallest such structure, by concrete implementation for all other cases
- Showed an infinite hierarchy of bigger problematic structures exists
- Established formal connections between free-choice Petri nets and asynchronous nets (omitted in this talk)
- Described LSGA-nets as an alternative and equivalent approach to generate distributed nets (dito)
- Described structural conflict nets and showed them to be a class of nets the implementation is valid for (dito)

Thank You!

- Institut f
 ür Programmierung und Reaktive Systeme @ TU Braunschweig
- 🍬 National ICT Australia
- Deutsche Forschungsgemeinschaft
- Deutscher Akademischer Austauschdienst
- Studienstiftung des deutschen Volkes